

Pearlite in multicomponent steels: phenomenological steady-state modeling

Jiayi Yan, John Ågren, Johan Jeppsson Thermo-Calc Software AB, Sweden Presented by: Kaisheng Wu, Thermo-Calc Software Inc., USA

> TMS 2020 26 Feb 2020, San Diego, USA

> > www.thermocalc.com

Outline

- Austenite-to-pearlite transformation
 - Assumptions for modeling
- Steady-state growth rate: driving-force-dissipation balance
 - Finite interfacial mobility
 - Constrained carbon equilibrium and "optimal pearlite"
 - Solute drag
- Grain boundary nucleation rate
 - Effect of grain boundary segregation
- Summary

The austenite-to-pearlite transformation and <u>assumptions</u> for modeling

- Cooperative eutectoid transformation
- <u>Continuous lamellar</u> composite in <u>spherical</u> colonies
 - Divorced (degenerate) or rod microstructure not considered
- <u>Constant (steady-state)</u> growth rate and lamellar spacing
 - Divergent pearlite (due to soft impingement) not considered

Fe-2.46C-3.50Mn (at.%) 5h at 625°C (α+θ two-phase region) C.R. Hutchinson, R.E. Hackenberg, and G.J. Shiflet: Acta Mater., 2004, vol. 52, pp. 3565-85.

Steady-state growth rate: a driving-force-dissipation balance approach

- This equation defines v as a function of S
- Driving force depends on α and θ compositions (to be revisited)

www.thermocalc.com

Comparison to previous modeling approaches

- Previous models all have advantages and simplifications for different model ingredients. In comparison, we have ...
- Simplified capillarity consideration
 - Not considering equilibrium of surface tension at $\gamma/\alpha/\theta$ trijunction
- Simplified volume diffusion field
 - Not looking for local equilibrium at γ/α or γ/θ interface
- Added finite interfacial mobility and solute drag

Significance of finite interfacial mobility

- Critical spacing: $S_c = 2\sigma V_m / \Delta G_m$, where v = 0
- Can obtain unique v and S by dv/dS = 0
- For infinite interfacial mobility, $S/S_c = \cdots$
 - 2 for volume-diffusion control
 - 1.5 for boundary-diffusion control
 - 1.5~2 for mixed control
- Finite interfacial mobility allows $S/S_c > 2$
 - Previously $\sigma^{\alpha/\theta} > 1$ J/m² (too high) for S to agree with experimental value
 - With finite M^I , $\sigma^{\alpha/\theta}$ can be 0.5J/m² (reasonable)

Temperature dependence of interfacial mobility

- Non-Arrhenius temperature dependence of interfacial mobility
 - First discovered in 1976*
 - Parameterized empirically in this work
 - Can possibly be modeled based on ledge mechanism of growth as observed** (future work)

*F. Togashi and T. Nishizawa: J. Japan Inst. Met., 1976, vol. 40, pp. 691–700 **For example, D.S. Zhou and G.J. Shiflet: Metall. Trans. A, 1991, vol. 22A, pp. 1349–65 www.thermocalc.com

Constrained Carbon Equilibrium (CCE)

- In alloyed steel, driving force (and then growth rate) depends on the θ : α partition coefficient(s) $K_i^{\theta/\alpha}$ of substitutional alloying elements
 - $K_i^{\theta/\alpha}$ from orthoequilibrium (OE): orthopearlite, usually at high T
 - $K_i^{\theta/\alpha} = 1$ (paraequilibrium, PE): parapearlite, usually at low temperature
- In general they are two special cases of CCE under an arbitrary $K_i^{\theta/\alpha}$

Fe-0.69C-1.80Mn (wt.%) T=900K

"Optimal pearlite"

• Can maximize v wrt S and $K_i^{\theta/\alpha}$: "optimal pearlite"

 Can realize a smooth transition from orthopearlite to parapearlite from high-T to low-T

Fe-0.69C-1.80Mn (wt.%) T=900K

S[m]

www.thermocalc.com

Dissipation mechanisms

- Interface- and diffusion-mixed control (even for Fe-C)
- Element generating most dissipation by diffusion: M for orthopearlite, C for parapearlite, M→C for optimal pearlite www.thermocalc.com

Solute drag

• Using Cahn's model (1962) for simplicity

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0

2

 $\Delta G_m^{SD}/c_0 RT$

• Can describe the "bays" on growth curves for Cr- and Mo-containing alloys

Nucleation rate and overall transformation kinetics

- GB nucleation rate is modeled and fitted to overall kinetics
 - Time-independent GB nucleation rate is enough to describe overall kinetics
 - Direct measurement of GB nucleation rate is scarce but shows time dependence (not understood physically!)

Grain boundary segregation and nucleation rate

- GB nucleation rate should depend on GB concentration
- GB concentration modeled by equilibrium McLean isotherm $u_i^{GB} = u_i^0 \exp\left(\frac{E_i^{GB}}{RT}\right)$
- Can describe the dramatically retarded transformation below the nose for Cr-steels

Fe-1.02C-2.89Cr (wt.%) Dashed curves: without GB segregation Solid curves: with GB segregation

Summary

- Steady-state modeling of pearlite growth and nucleation
 - Suitable for multicomponent steel using CALPHAD databases
- Finite interfacial mobility and solute drag are introduced for growth
- "Optimal pearlite": Partitioning of substitutional elements in pearlite can be optimized, which realizes an ortho-para transition
- GB nucleation rate (with effect of GB segregation) and overall kinetics are modeled

J.-Y. Yan, J. Ågren, J. Jeppsson, Metall Mater Trans A (2020), accepted Notes after presentation: Paper published in Vol. 51A pp. 1978-2001

Thermo-Calc implementation

Pearlite Property Model in Thermo-Calc since Version 2019a •

www.thermocalc.com

106

Time [s]

101